
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Optimization Metaheuristic for Robust
Multi-Agent Pathfinding

Jan Podlucký

Supervisor: Ing. David Zahrádka
January 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

503173 Personal ID number: Podlucký Jan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Optimization Metaheuristic for Robust Multi-Agent Pathfinding

Bachelor’s thesis title in Czech:

Optimalizační metaheuristika pro robustní multiagentní plánování

Guidelines:

1. Familiarize yourself with the problem of robust Multi-Agent Pathfinding (MAPF) and with methods to solve it.
2. Extend the Safe Interval Path Planning (SIPP) algorithm with the capability to find k-robust solutions.
3. Adapt the MAPF-LNS2 optimization metaheuristic to k-robust MAPF.
4. Design and implement various strategies for increasing robustness in context of practical applications of robotic fleets,
e.g.: finding a (k+1)-robust solution given a k-robust solution, finding a k-robust solution given a (k+1)-robust solution,
robustness increasing with time.
5. Experimentally verify the functionality of the developed methods and compare their properties with each other and with
selected standard k-robust MAPF algorithms.

Bibliography / sources:

[1] H. Ma and S. Koenig, “AI buzzwords explained: Multi-agent path finding (MAPF),” AI Matters, vol. 3, no. 3, pp. 15–19,
Oct. 2017.
[2] M. Phillips and M. Likhachev, “SIPP: Safe interval path planning for dynamic environments,” in 2011 IEEE International
Conference on Robotics and Automation, May 2011, pp. 5628–5635.
[3] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Bartak, and N.-F. Zhou, “Robust Multi-Agent Path Finding,” Proceedings
of the International Symposium on Combinatorial Search, vol. 9, no. 1, pp. 2–9, Sep. 2021.
[4] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig, “MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding
via Large Neighborhood Search,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 9, pp. 10 256–10 265, Jun. 2022.

Name and workplace of bachelor’s thesis supervisor:

Ing. David Zahrádka Intelligent and Mobile Robotics CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 09.01.2024 Date of bachelor’s thesis assignment: 22.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. David Zahrádka

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my thesis supervisor,
Ing. David Zahrádka, for his guidance
and support in working on this project. I
would also like to thank RNDr. Miroslav
Kulich, Ph.D., for his consultations.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, January 8, 2024

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 8. ledna 2024

v

Abstract
This thesis focuses its attention on the
problem of path planning for multiple
robots, also referred to as agents. This is
a problem of finding collision-free paths
for multiple agents from each agent’s
start location to its goal location. This
work focusses mainly on two MAPF algo-
rithms, the MAPF-LNS2 algorithm and
the MAPF-SIPP algorithm, which are be-
ing upgraded to solve a k-robust path
planning problem. In the k-robust path
planning, each agent can be delayed up
to k time steps without colliding with any
other agent. Furthermore, this thesis ex-
plores different strategies to find k-robust
paths. The results show that the pro-
posed k-robust MAPF-LNS2 method out-
performs the standard k-robust MAPF-
SIPP algorithm in terms of the success
rate in finding the solutions and also in
the sum of costs of the solution.

Keywords: MAPF-LNS2, MAPF-SIPP,
K-robustness, Path planning

Supervisor: Ing. David Zahrádka
Intelligent and Mobile Robotics CIIRC

Abstrakt
Tato práce se zaměřuje na problém plá-
nování trasy pro více robotů, v této práci
nazývaných agenty. Jedná se o úlohu na-
lezení bezkolizních tras pro více agentů z
jejich startovních míst do jejich cílových
lokalit. Tato práce se soustředí především
na dva multiagentní algoritmy, a to algo-
ritmus MAPF-LNS2 a algoritmus MAPF-
SIPP, které jsou vylepšeny tak, aby ře-
šily problém plánování k-robustní cesty.
V k-robustním plánování trasy může být
jakýkoliv z agentů zpožděn až o k kroků
bez toho, aby kolidoval s jakýmkoli jiným
agentem. Tato práce dále zkoumá různé
strategie pro nalezení k-robustních cest.
Výsledky ukazují, že navržená k-robustní
metoda MAPF-LNS2 předčí standardní
k-robustní algoritmus MAPF-SIPP, jak
co se týče úspěšnosti nalezení řešení, tak
i ceny nalezených cest.

Klíčová slova: MAPF-LNS2,
MAPF-SIPP, K-robustnost, Plánování
trasy

Překlad názvu: Optimalizační
metaheuristika pro robustní multiagentní
plánování

vi

Contents
1 Introduction 1
2 Related works 3
3 Problem Formulation 5
3.1 Environment 5
3.2 Single Agent Path Finding 5
3.3 MAPF . 6
3.4 K-robustness 6
3.5 Optimal path 6

3.5.1 Single agent optimal path 6
3.5.2 Multiple agents optimal path . 7

4 Method 9
4.1 Single-agent path planning 9

4.1.1 A* algorithm 9
4.1.2 SIPP . 11

4.2 Multi-Agent Path Finding 14
4.2.1 Prioritised Planning 14
4.2.2 MAPF-SIPP 15
4.2.3 K-robust MAPF-SIPP 16
4.2.4 MAPF-LNS2 17
4.2.5 K-robust MAPF-LNS2 24

5 Experimental Results 31
5.1 Environment 31
5.2 K-robust MAPF-LNS2 31

5.2.1 Algorithm Configuration
Parameters 32

5.2.2 Neighbourhood size selecting 33
5.2.3 Testing operators 36
5.2.4 Initial solution robustness . . . 38
5.2.5 Robustness - cost 41

5.3 K-robust MAPF-SIPP 42
5.3.1 Parameters 42
5.3.2 Success rate 42

5.4 Comparison of k-robust MAPF
algorithms . 43

6 Conclusion 45
Bibliography 47
A List of Abbreviations 51

vii

Figures
1.1 Example of map for MAPF 2

4.1 Comparison of Euclidean and
Manhattan distances. 11

4.2 Safe and collision intervals for
highlighted cell 11

4.3 MAPF-SIPP drawback 15
4.4 Example of 1-robust plan 17
4.5 Safe and collision intervals 27

5.1 Maps of the used environments . 31
5.2 Comparing neighbourhood sizes on

random-32 map. 33
5.3 Comparing neighbourhood sizes on

random-64 map. 34
5.4 Comparing neighbourhood sizes on

warehouse map 34
5.5 Comparing neighbourhood sizes on

random-32 with Tmax = 3600s 34
5.6 Comparing neighbourhood sizes on

random-32 map with 100 agents . . 35
5.7 Comparing operators on

random-32 map. 36
5.8 Comparing operators on

random-64 map. 37
5.9 Comparing operators on warehouse

map. 37
5.10 Initial robustness testing on

random-32 map with k=4 39
5.11 Initial robustness testing on

random-32 map with k=6 39
5.12 Initial robustness testing on

random-64 map with k=4 39
5.13 Initial robustness testing on

random-64 map with k=6 40
5.14 Initial robustness testing on

warehouse map with k=4 40
5.15 Initial robustness testing on

warehouse map with k=6 40

Tables
5.1 K-robust MAPF-LNS2 input

parameters . 32
5.2 Destroy and Repair type numbers 32
5.3 Neighbourhood iterations

statistics . 35
5.4 Operators iterations statistics . . 38
5.5 Increasing robustness sum of costs 41
5.6 K-robust MAPF-SIPP input

parameters . 42
5.7 K-robust MAPF-SIPP success rate

on random-32 map 42
5.8 K-robust MAPF-SIPP success rate

on random-64 map 43
5.9 Comparing algorithms sum of costs

on random-32 map 43
5.10 Comparing algorithms sum of

costs on random-64 map 43
5.11 Comparing algorithms sum of

costs on warehouse map 43

viii

Chapter 1
Introduction

As the inclination of the workforce towards manual labour experiences a
gradual decline, the industry is putting a growing emphasis on automation.
One of the many branches of automation are cooperative robots. These robots
are used in many branches of industry, such as warehouse management [22]
or, for example, airport surface operations [12]. Consequently, this thesis
focuses its attention on the problem of path planning for multiple robots, also
referred to as agents.

Multi-agent Path Finding (MAPF) is a problem of finding collision-free
paths for multiple agents from each agent’s start location to its goal location.
The MAPF algorithm during the planning of the trajectories of the agents
assumes that each agent will follow its plan perfectly. However, in the real
world, agents may experience delays. They can be caused by many factors,
such as a low battery of an agent or slippage of the robot wheel. Each of those
unpredicted delays could cause a deviation from the plan and subsequent
collision between agents.

Considering the fact that agents should not collide, we would need to stop
all agents in the workspace and replan the trajectory of each of them, which
would take some time depending on the number of agents used, the size of
the workspace, and other factors. This approach is doable if there are not
many agents and delays do not occur often. However, in large companies
where there are hundreds of agents cooperating, this approach is inadmissible
as the chances of at least one of them being delayed are much higher, and
each interruption of the production costs a lot of money.

Therefore, we define a k-robust MAPF algorithm [2] as one that finds paths
for agents in such a way that any number of them can be delayed by up to k
time steps without resulting in collisions. The extension of MAPF algorithms
to find k-robust paths is the main task of this thesis.

This thesis is focused mainly on two MAPF algorithms that are being
upgraded to solve a k-robust path planning problem.

The first of the algorithms in this thesis is the Multi-agent Path Finding
via Safe Interval Path Planning (MAPF-SIPP) which is here extended to find
a k-robust path for each agent.

The second is MAPF-LNS2, which is a MAPF algorithm based on Large
Neighbourhood Search (LNS) and its task is to find a k-robust set of paths for

1

1. Introduction
the specified MAPF problem, and additionally this thesis explores different
strategies of finding k-robust paths.

A typical example of the problem addressed involves a given number of
agents, their starting positions, their goal positions, the required robustness
level k, and the task is to find a k-robust path for each agent using this
specification. An example of a typical MAPF problem can be seen in Fig.
1.1.

Figure 1.1: Example of map for MAPF

2

Chapter 2
Related works

The methods for solving Multi-Agent Path-finding (MAPF) are divided into
optimal, which guarantee finding the optimal cost C∗ solution, bounded
suboptimal, which guarantee finding a solution with maximum cost of BC∗,
where B ≥ 1 is a given bound and sub-optimal, which do not guarantee any
optimality of the solution. The comprehensive summary of the state-of-the-art
MAPF methods can be seen in [19].

Among the state-of-the-art optimal methods, there is the Conflict Based
Search (CBS) algorithm [15], based on iteratively resolving conflicts among
agents until a collision-free solution is found, or the Increasing Cost Tree
Search (ICTS) [16]. The next mentioned optimal method is the M* algorithm
[21], which is a MAPF algorithm based on the A* algorithm.

Among suboptimal methods, there are many MAPF methods that use
Prioritised Planning that are complete only on well-formed instances [23]
such as Hierarchical Cooperative A* (HCA*) [18], or the Prioritised SIPP
for Multi-Agent Path-Finding (MAPF-SIPP) [1], which operates similarly
to HCA* with the difference that it uses the SIPP algorithm instead of A*.
The subsequent suboptimal algorithm is MAPF-LNS [8], which combines a
selected MAPF algorithm with the Large-Neighbourhood Search (LNS) [17].
This algorithm was then evolved into the incomplete algorithm MAPF-LNS2
[7], a fusion of Prioritised SIPPS, an algorithm created specifically for this
purpose, and Large-Neighbourhood Search.

The example of a complete suboptimal Multi-Agent Path-finding (MAPF)
algorithm can be the Push-and-Swap algorithm[10] or its modifications the
Parallel Push-and-Swap[14].

Within suboptimal methods with guarantees, examples include the En-
hanced CBS algorithm [4], or its modification the Explicit Estimation CBS
[9].

The next modifications of the MAPF algorithm are those that expect
possible delays among agents. Examples of such modifications include k-robust
MAPF algorithms and p-robust MAPF algorithms. k-robust algorithms
assume that each agent can be delayed by up to k time steps, and examples of
these include k-robust CBS [2]. On the other hand, p-robust MAPF algorithms
aim to reduce the probability of collision below a specified threshold p ∈ (0, 1).
Examples of these algorithms include p-robust CBS [3] and its modification,

3

2. Related works
Greedy p-robust CBS [3].

4

Chapter 3
Problem Formulation

In this section, individual problems are formulated. In Section 3.1 the
environment, shared between all problems, is defined, in Sections 3.2 and 3.3
the Single and Multiple Agent Path Finding is described, in Section 3.4 the
k-robustness is defined and in the end in Section 3.5 the optimal path for
single or multiple agents is defined.

3.1 Environment

The environment ENV is a graph H(V, E) that can be represented as a grid
divided into cells (vertices v ∈ V of the graph), and neighbouring cells are
connected in the graph by edges e ∈ E. As it is working with a discrete time,
the time is divided into separate time steps. The cell is occupied in the time
step t if there is an obstacle or is free (not occupied) otherwise.

There are two types of obstacles, static and dynamic. The static obstacle,
which can be imagined as walls, occupies the cell for t =< 0,∞ > and the
dynamic obstacle (moving) occupies the cell for t = (< t1, t2 > |t1 ≤ t2) and
then moves to another cell depending on the way this obstacle moves.

In each time step, an agent can move in one of the four cardinal directions
(up, down, right, left) if the cell to which it moves is free or stays still in the
current cell. The sequence of visited vertices vt (cells on the map) in time t
by agent a is called a path pa = {v1, v2, . . . , vn}, where n is the length of the
path.

3.2 Single Agent Path Finding

Given an environment ENV as previously described, the set of obstacles
O ⊆ ENV , the agent a with its start node s ∈ ENV \O and the goal node
g ∈ ENV \O, the algorithm’s task is to find an optimal path p∗ for a from s
to g. The optimal path is further described in Section 3.5.

In this thesis, two single agent path-finding algorithms are described: the
A* algorithm and the Safe Interval Path Planning algorithm (SIPP).

5

3. Problem Formulation
3.3 MAPF

Given an environment ENV , the set of obstacles O ⊆ ENV , the set of
agents A, the set of start nodes S ⊆ ENV \O and the set of goal nodes
G ⊆ ENV \O. The task of the multi-agent path finding algorithm (MAPF)
is to find a set of paths P , which consists of one path pa for each agent a ∈ A
from its start sa ∈ S to its goal ga ∈ G.

In this thesis, two MAPF algorithms are described: Prioritised Planning
[5] and MAPF through a Large Neighbourhood Search [8],[7].

3.4 K-robustness

The k-robustness [2] of an algorithm is important to prevent collisions due to
unexpected delays of agents.

In the single agent path-finding algorithm, we say that the path of an agent
is k-robust if the agent can be delayed by up to k time steps relative to the
original plan and does not collide with any obstacle.

In the MAPF algorithm, a k-robust set of paths P is defined as a set of
paths where each agent following path pi ∈ P can be delayed up to k time
steps compared to the original plan and none of the agents collides with either
some of the obstacles or another agent.

The number of k-collision of a path p ∈ P is defined as the maximal number
of collisions that can happen to an agent a ∈ A while following its path pa if
any agent in an environment can be delayed by k time steps.

A path p is more robust than a path p′, if the path p has a higher k-
robustness than path p′ or has the same k-robustness and also has a lower
number of k = (k + 1)-collisions.

A set of paths P is more robust than a set of paths P ′ if all the paths
pi ∈ P have a higher k-robustness than the lowest robust path p′ ∈ P ′ or
have the same k-robustness as p′, but have a lower sum of k + 1-collisions of
all the paths pi ∈ P than a set of paths P ′.

3.5 Optimal path

An optimal path is a path that minimises a given criterion. An example of
optimisation criterion can be a length of the path, a number of k-collisions,
or, for example, a sum of costs of all planned agents in the MAPF problem.

3.5.1 Single agent optimal path

If no k-robustness is required and agent collisions with obstacles are not
acceptable, the optimal path could be defined as the path with the lowest
number of the four direction moves because these agent moves use more fuel
than the waiting action.

6

.................................... 3.5. Optimal path

Given that in this work, all moves are considered to have the same cost, in
this study we define the optimal path for single agent path finding algorithms
as the path that takes the least amount of time steps and does not have any
collisions. This number of time steps is called the cost of the path.

If k-robustness is required, the optimal path for a single agent is defined as
the path with the lowest cost, which is k-robust.

3.5.2 Multiple agents optimal path

In the 0-robust Multi-Agent Path Finding, there are two main ways to define
an optimal set of paths P using the Flowtime or makespan [11].

The first way is to say that the optimal P for multiple agents is the one
that minimises the total sum of costs of each agent’s path, which is also
known as the Flowtime criterion.

The second way is to find the cost ch of the path ph ∈ P with the highest
cost and say that the optimal P is the one with the lowest ch. This cost of
the most expensive path is called the makespan of P .

If k-robustness is required, we again define the optimal set of paths P as
either the one with the lowest makespan or the one with the lowest sum of
costs, both fulfilling that all moves in P are k-robust.

7

8

Chapter 4
Method

This chapter describing the algorithms used is divided into two primary
sections. Section 4.1 focuses on single-agent, while Section 4.2 focuses on
multi-agent path finding.

4.1 Single-agent path planning

4.1.1 A* algorithm

This Section describes the first of the single-agent path planning algorithms
used in this thesis, the A* algorithm [6], which finds a path for one agent
from its start to its goal location, as described in the problem formulation
section.

The algorithm (1) describes the A* path-finding algorithm.
First, the open list Ol is initialised with the starting vertex s and the closed

list Cl is initialised as an empty list [lines 1-2].
Afterwards, the algorithm iterates until it finds the shortest path from s

to the goal g, or until Ol becomes empty [line 3].
In each iteration, a vertex with the lowest value of function f(n) (described

below) is taken from ol, marked as a current node cn and moved to Cl [lines
4-6].

Then if cn is the goal g, the path from g to s is reconstructed using the
parent node of each node. This path is then returned in reverse order as the
desired path from s to g [lines 7-8].

If cn is not g, then each neighbour n of cn is checked if it is not in cl [line
10]. If it is, n is skipped because it is already an explored node.

If n has not been explored yet, its temporary score g(cn)t = g(cn) + cost(n)
is calculated [line 12], where cost(n) is the cost to get to the neighbour node
n and g(cn) is the sum of costs of an agent from its s to the current location
cn.

If the neighbour n is not in ol or g(cn)t < g(n), then cn is set as the
neighbour’s parent, g(n) = g(cn)t and f(n) = g(n) + h(n) [lines 14-16], where
h(n) is the heuristic function described below. Then n is added to ol if it is
not there yet [lines 17-18].

9

4. Method
Then the main loop is run again until ol = ∅. If the open list becomes

empty without finding a solution, the algorithm finishes without a solution
and reports a failure.

Algorithm 1 A* Algorithm
Input: map, start, goal

Output: solution or error

1: Initialise open list with start
2: Initialise closed list as empty
3: while open list is not empty do
4: cn ← node in open list with lowestfscore
5: Remove cn from open list
6: Add cn to closed list
7: if cn is goal then
8: return path to cn

9: for all n ∈ neighbor nodes of cn do
10: if n in closed list then
11: continue
12: g(cn)t ← g(cn) + cost(n)
13: if n not in open list or g(cn)t < g(n) then
14: parent(n)← cn

15: g(n)← g(cn)t

16: f(n)← g(n) + h(n)
17: if n not in open list then
18: Add n to open list
19: return path_not_found

A* algorithm heuristics

This algorithm uses the so-called heuristic function f(n) = g(n) + h(n), to
choose the best vertex for expansion (Algorithm 1 [line 4]), which is an
estimate of the cost of the path from start to goal through the vertex n to
find the shortest p. g(n) is the sum of costs from s to the current location
of an agent, and h(n) is the heuristic function, which is an estimate of the
remaining cost from the current location n to the goal.

There are many ways to calculate h(n), but it should never overestimate
the real cost of reaching the goal from the current position, to find the shortest
path.

In this work h(n) is calculated as a Euclidean distance, shown in Fig. 4.1a
and is calculated as h(n) =

√
(gx − nx)2 + (gy − ny)2, where gx, gy are the x

and y coordinates of the goal and nx, ny are the current x and y coordinates.
Another commonly used heuristic function is the Manhattan distance,

shown in Fig. 4.1b and is calculated on a grid base as
h(n) = |gx − nx|+ |gy − ny|.

10

.............................. 4.1. Single-agent path planning

h(n)

g(n)

n

(a) : Euclidean distance

h(n)

g(n)

n

(b) : Manhattan distance

Figure 4.1: Comparison of Euclidean and Manhattan distances.

4.1.2 SIPP

The second single agent path-finding algorithm in this work is Safe Interval
Path Planning (SIPP)[13], which is an algorithm used to find a trajectory for
an agent in an environment with dynamic obstacles. It does so by constructing
the so-called safe and collision intervals for each vertex.

Safe and collision intervals

The safe interval for each cell (x, y) in environment is defined as the continuous
time interval (t1, t2) in which the cell is not occupied and the collision interval
as the continuous time interval (t1, t2) in which the cell is occupied.

(a):

Time
0 1 2 3 4 5 6

safe intervals

collision intervals
(b):

Figure 4.2: Safe and collision intervals for highlighted cell

The example of safe and collision intervals for one cell in a specific envi-
ronment with 2 agents can be seen in Fig. 4.2. As seen in Fig. 4.2a, the
highlighted cell is unoccupied until t = 2 (safe interval), then it is occupied
for one time step by the green agent (collision interval), then it is again
unoccupied until t = 4, then occupied by the blue agent for one time step
and then unoccupied for the rest of the time.

11

4. Method
SIPP algorithm

As seen in Algorithm 2, the SIPP search algorithm is the extension of the
A* algorithm [13]. The biggest difference is in how the algorithm finds
the neighbour nodes of the current node. The function for obtaining the
neighbours of the vertices is described in Algorithm 4 [line 7].

In this algorithm, each vertex v has its list of safe intervals sis(v) =
{si0, si1, . . . , sin−1} sorted by time, where n is the number of safe intervals.
A state S is defined as a tuple of the location on the map (vertex) S.v and
the safe interval index S.id, where S.id is the order of the safe interval si(S)
in sis(S.v). Each S also has its values f(S) = g(S) + h(S) and g(S) as in the
A* algorithm. As a heuristic function h(s), the Euclidean distance is used
again as in A*.

First, open list ol and closed list cl are defined as empty lists. The start
state Ss with g(Ss) = 0 and f(Ss) = h(Ss), where h(Ss) is the Euclidean
distance from start to goal, is then pushed to ol as a tuple of the start vertex
and the index of the safe interval id(Ss) = 0.

SIPP then starts to iterate through all states s in ol and in each iteration
takes the one with the lowest f(s) and marks it as a current state cs. Then if
cs.v is the goal vertex and the end of the safe interval of cs is equal to ∞, the
SIPP returns the path reconstructed by the function GetPath, which iterates
through the parent states of each state starting from the goal state, until it
reaches the start state. In each iteration, it adds the vertex S.v to the path
as its t -th element, where t is the time step in which the agent was in the
state S. This process can be seen in detail in 3.

If cs is not the goal, the neighbouring states finding function GetNeighbors
described in Algorithm 4 is run.

First, the algorithm to obtain the set of all neighbouring states N finds a set
of all possible moves M from the current state cs to one of the neighbouring
vertices. Then iterates through M and for each move m ∈M calculates the
earliest arrival time st to the neighbouring node as st = g(cs)+cost(m) where
g(cs) is the g score of the state s and cost(m) is the cost of m. Subsequently,
it computes the latest arrival time et to the neighbouring node as the sum of
cost(m) and the end time of the safe interval in state cs in which the agent
is currently. In this algorithm, the cost of the move cost(m) == 1 as it is
worked with agents that perform one move per second.

Subsequently, the algorithm finds all safe intervals sis = {si0, si1, . . . , sin−1}
for the neighbouring vertex n where the agent is after move m. For each
sii ∈ sis check if the end of sii is lower than st and the start of sii is higher
than et [line 8]. If not, this safe interval is skipped because it cannot be
reached from cs, and the algorithm continues with the next sii. Otherwise,
the time t is calculated as the earliest possible arrival time to the neighbour
n from cs. If t is valid, which means t ≥ st and t ≤ et, vertex n is pushed
with its safe interval number i and arrival time t to all neighbours found N .
After all M and their sis are searched, the function returns all neighbours N
found.

cs is then pushed into the closed list, so this state will not be searched again.

12

.............................. 4.1. Single-agent path planning

This step can be performed without losing any solution, because the states
of ol are taken ascending by their value of f , where f(cs) = g(cs) + h(cs) so
this state could not be reached earlier during its safe interval, because the
value h is always the same for cs and the value g is equal to the number of
time steps.

The algorithm then iterates through each previously found neighbour state
n ∈ N , unless n ∈ cl, then it continues with the next neighbour n ∈ N
found. For every n /∈ cl the temporary g score g(n)temp = g(cs) + cost is then
calculated, where g(cs) is the g score of the current node and the cost is the
number of time steps needed to reach n from cs. For example, if the safe
interval of state n starts at time t = 2 but the agent is in the current state cs

in t = 0, it will need to wait one time step at the current state and then at
t = 1 it will move to n, so the cost will be equal 2.

After g(n)temp is computed, there are two ways of what happens next.
If the state n has not been discovered yet, it is added to ol with g(n) =
g(n)temp and f(n) = g(n)temp + h(n). If it has been and if g(n)temp is
less than the stored value g(n)old of node n, then g(n) = g(n)temp and
f(n) = f(n)old − g(n)old + g(n)temp. This state is then again pushed into ol

and the SIPP starts to iterate through ol again.

Algorithm 2 SIPP
1: initialise ol and cl

2: add startState to ol

3: while ol is not empty do
4: current← node in ol with lowest f score
5: if current.isSolution() then
6: return path
7: N ← getNeighbors(current)
8: cl.insert(current)
9: for each n in N do

10: if n not in cl then
11: gtemp = g(current) + n.cost
12: if not yet discovered node then
13: f(n) = gtemp + h(n)
14: g(n) = gtemp

15: ol.increase(n)
16: else
17: if gtemp < g(n).old then
18: g(n) = gtemp

19: f(n)− = g(n).old− gtemp

20: ol.increase(n)
21: return false

13

4. Method
Algorithm 3 GetPath

1: while curr.parent ̸= nullptr do
2: prev ← curr.parent
3: t← prev.timestep + 1
4: while t < curr.timestep do
5: p[t]← prev.location
6: t← t + 1
7: p[curr.timestep]← curr.location
8: curr ← prev

9: p[0]← curr.location
10: return p

Algorithm 4 getNeighbors(s, neighbors)
1: motions← allNeighbors(s.state)
2: for each m in motions do
3: start_t← g(s) + m.cost
4: end_t← safeIntervals(s.state)[s.interval].end + m.cost
5: sis← safeIntervals(m.state)
6: for i← 0 to size(sis) - 1 do
7: si← sis[i]
8: if si.start > end_t or si.end < start_t then
9: continue

10: t← Earliest possible arrival time to m.state in si
11: if t is valid then
12: neighbors.emplace_back(m.state with si and t)
13: return neighbors

4.2 Multi-Agent Path Finding

4.2.1 Prioritised Planning

Prioritised Planning (PP)[5] is a Multi-Agent Path Finding (MAPF) method
that solves the problem by decomposing it into a sequence of simpler, priori-
tised subproblems, each of which is solved independently.

Each of the agents is assigned a priority based on certain criteria. The
criterion could be, for example, their importance. In algorithms mentioned
in this thesis, a random priority is used, as none of the agents is considered
more important than the others. Subsequently, all agent paths are planned
sequentially by a selected single agent path-finding algorithm, which takes
into account paths planned for previous agents to avoid collisions.

The major benefit of PP lies in its efficiency, effectively coordinating
multiple agents by decomposing the complex planning problem into sequential
prioritised subproblems, thus reducing the runtime of the algorithm.

14

............................... 4.2. Multi-Agent Path Finding

4.2.2 MAPF-SIPP

The first of the MAPF algorithms in this thesis is Multi-Agent Path Finding
via Safe Interval Path Planning (MAPF-SIPP)[1] which is a MAPF method
based on Prioritised Planning using SIPP as its single agent solver.

As seen in Algorithm (1), CollInts = {cints0, cints1, . . . cintsn} is created
as a list of collision intervals cintsi = {cint0, cint1, . . . cintm} for each vertex
vi ∈ V of the map, where n is the total number of vertices and m is the
number of collision intervals of vertex vi.

Then, all static obstacles of the vertex vi ∈ V are added to CollInts so
that cintsi = {(0,∞)}. This prevents any agent from visiting this vertex at
any time.

A random order of agents is chosen in which their trajectory will be planned.
The algorithm then starts iterating through all agents ai, and in each iteration
finds the path using the SIPP algorithm for agent ai.

If SIPP returns a valid path p, MAPF-SIPP adds the path to the set
of paths found and updates CollInts. CollInts is updated by adding an
additional interval (t1, t2) to each cintsv ⊂ CollInts, where (t1, t2) is the
time interval when the vertex v was visited by the path p and cintsv is the
list of collision intervals for vertex v. If SIPP does not find a valid path,
MAPF-SIPP returns that it was not able to plan a path for all the agents.

After successful planning of the paths for each of the agents, the algorithm
returns the set of paths found.

The most significant advantage of this algorithm is its computation time
efficiency. As it is planning the path for each agent separately, the time
requirement is linear with increasing number of agents.

This algorithm is complete only on well-formed instances [23], which means
that on instances that are not well-formed, it is not guaranteed to find a
solution even if one exists.

For example, in Fig. 4.3 it can be seen that this problem has an easy
solution. All the blue agent needs to do is wait until the green agent leaves the
goal of the blue agent and then move one step toward the goal. MAPF-SIPP
will not find a solution for this instance if the blue agent has higher priority.
The green agent will not be able to reach the goal because the blue agent,
which was planned earlier, will block its path from the start to the goal.

This can be prevented by using another order in which agents will be
planned, but it adds a time complexity as every time the algorithm does not
find a solution, the agents order needs to be changed.

Figure 4.3: MAPF-SIPP drawback

15

4. Method
Algorithm 5 MAPF-SIPP algorithm

Input: Agents, map
Output: Solution or Error

1: CollInts← static obstacles
2: for all agent ∈ agents do
3: path← sipp.search(agent, CollInts)
4: if path then
5: AllPaths← AllPaths ∪ path
6: update CollInts by path
7: else
8: return Error
9: return AllPaths

4.2.3 K-robust MAPF-SIPP

In order to find a set of k-robust solutions, where each agent can be delayed
by up to k time steps, MAPF-SIPP must be modified.

The biggest difference from the original MAPF-SIPP is how the algorithm
updates its list of collision intervals CollInts [Algorithm 5, line 6].

In the original MAPF-SIPP algorithm, the set of all collision intervals
CollInts was updated after finding the path p by adding an additional
interval (t1, t2) to each cintsv, where (t1, t2) was the time interval when the
vertex v was visited by the path p.

In the k-robust MAPF-SIPP the CollInts is updated by adding an interval
(t1 − k, t2 + k) to each cintsv instead of adding the interval (t1, t2). By this
approach, each vertex v of the environment has at least k time-step gap
between being visited by different agents, which means that any of the agents
can be delayed up to k time steps without colliding.

Except for updating the collision intervals, the k-robust MAPF-SIPP works
the same way as the original one.

In Fig. 4.4 an example of a 1-robust plan can be seen. The green, higher-
priority agent, which was planned earlier than the blue one, is heading left,
and the blue agent heads down. The green agent currently occupies the cell
(vertex) in which it is located, but it also virtually occupies the cell, where it
was one time step earlier (right) and the cell in which it will be in the next
time step (left). In the next time step, the green agent moves left and will
occupy the cell that is one move left of the cell that is currently occupying
and will virtually occupy the cells that are one move left from the cells that
is currently virtually occupying. The agents can virtually occupy the same
cell in the same time step, but cannot be in the cell that is virtually occupied
by any other agent. Virtually occupying the cell, in which the agent will be
one time step later, secures that none of the other agents can be there in the
current time step and this agent will not k-collide with them.

The lower priority blue agent cannot move down in the next time step

16

............................... 4.2. Multi-Agent Path Finding

because it would virtually collide with the green agent, which means that
the plan would not be 1-robust. This means that the blue agent needs to
wait 3 time steps in its current location, until the cell where it wants to move
becomes unoccupied.

Figure 4.4: Example of 1-robust plan

4.2.4 MAPF-LNS2

MAPF-LNS2 [7] is an algorithm that combines some MAPF algorithm with
a Large Neighbourhood Search (LNS) [17] to provide the best solution to the
MAPF problem. In this work, PP using the SIPPS algorithm is used as the
MAPF algorithm.

First, MAPF-LNS2 finds an initial solution (set of paths) that can contain
collisions using the chosen MAPF algorithm (PP using SIPPS) and then tries
to obtain a collision-free set of paths from the initial solution using LNS2,
which is described below. Then, if LNS2 finds a collision-free solution, the
total sum of costs of this set of paths is optimised using LNS [8].

In the following two sections, the LNS2 and then LNS methods will be
described in the order in which MAPF-LNS2 uses them.

LNS2

The LNS is a metaheuristic optimisation technique that takes a given solution
and tries to improve it. In this case, the solution is a set of paths. The
algorithm tries to improve the solution by repeating a cycle of two phases
called destroy and repair. In the destroy phase, the algorithm takes the given
paths for some number of agents, which are named neighbourhood in this
algorithm, and deletes them. The neighbourhood is chosen by the destroy
operators, which are described in the Neighbourhood selection section. After
destroying the paths of the agents chosen previously, the repair phase starts.
The chosen MAPF algorithm in this phase replans the deleted paths of the
agents in the neighbourhood and adds them to the unchanged paths of the
agents that were not in the selected neighbourhood.

If the solution after this process is better (has fewer collisions), the LNS2
accepts those changes. Otherwise, the changes are rejected, and the paths of
all agents remain unchanged in this cycle.

The LNS2 then continues with the next destroy and then repair cycle.
This process is repeated until it is interrupted by the chosen stopping criteria
(time limit, no collision, etc.).

17

4. Method
Neighbourhood selection. In order for LNS2 to work efficiently, properly
chosen neighbourhood selection methods are essential. In this algorithm,
there are three approaches and a combination of them to find the best
neighbourhood.

The best neighbourhood As with a size of N agents is searched using the
plan P and the collision graph Gc = (Vc, Ec), where Vc are agents of P and
Ec are tuples of agents whose trajectories collide with each other.

Collision-Based Neighbourhood. The first way to create As is to take
a random vertex v ∈ Vc and find a largest connected graph G′

c = (V ′
c , E′

c)
containing v and G′

c ⊆ Gc.
If |V ′

c | ≤ N we add all agents from V ′
c to As and then continue to add other

random agents from P to As until |As| = N using the random walk strategy.
If |V ′

c | > N we add N random vertices from V ′
c to As.

Failure-Based Neighbourhoods. The second neighbourhood search algo-
rithm is based on the idea of why some agents cannot find a non-collision way
from start to goal. The two main reasons may be either that their way to the
goal is blocked by some other agents or that the agent does not have enough
time to move from the starting node before other agents visit the starting
node, because all the neighbouring nodes of the starting node are occupied
by some other agents.

To solve these two problems, the agent a that has the most collisions in its
plan is chosen and added to As. Then a list of agents As and a list of agents
Ag are created. All agents who visit the goal node of a are added to Ag and
all agents who visit the start node of a are added to As.

There are three possible options:
If |As ∪Ag| = 0 there is no collision path existing and the algorithm just

returns As.
The next option is |As ∪ Ag| ≤ N , then |As ∪ Ag| is added to As and

random agents whose goal nodes are visited by some agent of As are added
until |As| = N or there are no more agents that visited the goal node of some
agent of As.

The last option is |As ∪ Ag| > N . If this happens, the agents are added
to As following the rules. If |As| = 0 N − 1 random agents are added from
Ag to As. Otherwise, if |Ag| > N − 2 the agent from As that visits the start
node of a as the first is added to As and then N − 2 random agents is added
from Ag to As. Otherwise, all agents are added from Ag to As, and then
N − 1 − |Ag| agents from As that visit the start node of a as the first are
added to As.

Random Neighbourhoods. The third approach to creating neighbourhoods
is to choose agents randomly. Each agent of Vc has a proportional chance
counted as 1+ the number of agents with whom they collide, to be added to
As.

18

............................... 4.2. Multi-Agent Path Finding

ALNS2. Adaptive LNS2 (ALNS2) is a combination of the previous three
neighbourhood selection methods M = {m1, m2, m3}. In each iteration, the
ALNS2 chooses some of the methods mi based on their weight function value
wi of the success rate in reducing the number of colliding pairs of agents in
the plan P . Each of the methods has a probability equal to wi/

∑
j wj to be

chosen as the neighbourhood selection method. The value wi is initially set at
1 and then calculated as wi = λ max{0, cpbefore − cpafter}+ wi(1− λ), where
cpbefore and cpafter are the number of colliding pairs of agents in the plan
P before and after iteration and λ ∈ (0, 1) is a parameter that determines
how fast the ALNS reacts to the success of the chosen algorithm. In this
algorithm λ = 0.1.

LNS

The LNS[8] operates similarly to LNS2, with the difference that LNS focusses
optimising the sum of costs of a collision-free solution, while LNS2 is designed
to minimise the number of colliding pairs. The next difference is in the used
neighbourhood selection methods.

Neighbourhood selection. In the LNS method, there are again three
neighbourhood selection methods as in the LNS2. The difference is in the
way these methods find neighbourhood As.

Agent-Based Neighbourhood. In the first method, an agent a′ that is not
in tabu_list and whose path is the most delayed compared to the shortest
path possible for this agent is chosen and inserted in As. This agent is then
added to tabu_list. From a randomly selected vertex pt visited by the agent
a′ path Pa′ = p0, p1, . . . pn in the timestep t a restricted random walk is
performed. This walk identifies all the vertices v along the path that are part
of a shorter path than the current path of the agent a′. When searching for
v, no consideration is given to the paths of other agents. All agents with
potential collisions in v in time t + m, where m is the number of moves
performed from vertex pt are then being added to As until |As| ≠ N . If not
all agents with potential collisions are added and |As| < N , another agent is
selected from those added to As, and a restricted random walk is performed
for some random point on their path. After adding all agents to tabu_list,
tabu_list is cleared.

Map Based Neighbourhood. The second method used to select the right
neighbourhood focusses on finding intersecting vertices, as rearranging the
order in which agents visit this vertex could improve the solution. Initially,
all vertices visited more than twice are identified, and from this set, a random
vertex is selected and placed into the queue.

Subsequently, a vertex x is dequeued. A random time step t is chosen
within the time frame when agents visit the vertex x. Subsequently, agents
are added to As by iteratively exploring which agents visit the vertex x
within a certain number of time steps before or after the time step t until

19

4. Method
N agents are collected in As or all time steps were explored. Following this,
all neighbouring vertices of x are pushed into the queue if not previously
explored. If |As| < N , the algorithm initiates a new iteration using the next
vertex x dequeued from the queue.

Random Neighbourhood. In the third method, N random agents are pushed
into As

ALNS. Adaptive LNS is a combination of three previously mentioned
neighbourhood selection methods and operates similarly to ALNS2, with the
difference that it does not consider the number of collisions but focusses
on improving the sum of costs. Like in ALNS2, at the beginning, each
neighbourhood selection method mi, is assigned a weight wi, initially set to 1.
The weight is then calculated as wi = λ max{0, socbefore−socafter}+wi(1−λ),
where socbefore and socafter are the sum of costs before and after re-planning
the neighbourhood chosen by the method mi. The probability of selecting a
specific method mi with weight wi is again equal to wi/

∑
j wj .

SIPPS

Safe Interval Path Planning with Soft Constraints (SIPPS) [7] is a modified
SIPP algorithm. The main difference between them is that if SIPPS does not
find a path without collisions, it returns a path with the lowest number of
collisions found. In the SIPP algorithm, the collisions are inadmissible, which
means that if the algorithm does not find a path with no collisions, it returns
no path.

In MAPF-LNS2, a prioritised SIPPS is used as an initial solver and also as
a repairing algorithm.

This algorithm uses a data structure where each node n consists of vertex
v(n), the index id(n) of its safe interval in the table of all safe intervals
T [v][id] and its safe interval si(n) =< low, high >, where the low value of
si(n) is also called the earliest arrival time of n and si(n) ⊆ T [v(n)][id(n)].

Each node also has its g(n), h(n) and f(n) score, which are standard
heuristic function elements (h(n) is again the Euclidean distance), but also
has its c(n) score, which is a number of collisions made to get to this node
from the start node. Each node also has its parent node and the is_goal flag,
which is set by default to false.

The process of finding the path by SIPPS can be seen in Algorithm 6 and
is described below.

Initially, a safe interval table T [v][id] is created as an array of all safe
intervals for each vertex v. This ensures that the path planned by this
algorithm will not collide with any obstacle or will have the lowest possible
number of collisions if a no-collision path does not exist. Open_list and
Closed_list are initialised. Subsequently, g(sn), h(sn), f(sn)and c(sn) of the
start node sn is computed and sn is added to Open_list [lines 1-4].

The nodes in Open_list are sorted ascending by its value c(n) in order to
find a path with the lowest possible number of collisions. If more than one

20

............................... 4.2. Multi-Agent Path Finding

node has the same number of collisions, those same c(n) value nodes are then
sorted ascending by their f(n).

The algorithm is executed by iterating through the Openlist until a solution
is found or the Openlist becomes empty [line 5].

In each iteration, the first node of Open_list (the one with the lowest c(n))
is taken and marked as the node currently being explored cn [line 6].

First, the flag is_goal, which is set by default to false, is checked for true.
If it is, cn is the goal, and the path from start to goal is reconstructed by the
function UpdatePath, that iterates through all the nodes visited by the path
and adds their location to the path [lines 7-8].

If is_goal is false, it is checked whether this node is the goal node. If
so, the future collision score cf for this node is calculated as a number of
collisions with obstacles while standing at this node [lines 9-10]. If cf = 0
the path is returned by UpdatePath function because it is the path with the
lowest number of collisions so there is no need to keep finding any other path
[lines 11-12].

If there are future collisions at this node, the c(cn) score for this node is
updated as c(cn) = c(cn) + cf and the is_goal flag of cn is set to true because
it is the goal node, but the path to this node might not be the lowest collision
path. This node is then checked by DominanceCheck function. If the output
of this function is true, cn is pushed to Open_list [lines 13-16].

Then, if is_goal = false, cn is added to closed_list [lines 17-18].
All the neighbours of cn are then found by Get_Neighbours(n) function

which is described below and a new node is made from each of them. Each of
the new nodes is then checked by DominanceCheck function and eventually
pushed to Open_list [lines 19-25].

Getting Neighbours. Initially Get_Neighbours(n) algorithm finds a list of
all reachable vertex v index id pairs from node n, where id is the index in
the safe interval table of the reachable safe interval from node n. Then a list
of successors is initialised as an empty list [lines 1-2].

The algorithm then iterates through all pairs found. In each iteration, it
first finds a safe interval < t1, t2 > in the table T of all safe intervals [line 4].
Then it finds the earliest arrival time ∈< t1, t2 > to the neighbouring node
and marks it as t1. If t1 exists, the algorithm finds the earliest collision-free
arrival time t′

1 otherwise it starts the next iteration [lines 5-7].
In the next step, the algorithm selects one of three ways based on the

values of variables t1 and t′
1, determining the following outcomes in each case.

If t1 = t′
1 the success set Succ increases with vertex v, an interval < t1, t2 >

and a flag WithColl set to false [line 10]. If t′
1 does not exist, the vertex v, an

interval < t1, t2 > is pushed again into Succ, but this time the WithColl flag
is set to true because there is always a collision during this interval [line 12].
Otherwise, the interval needs to be separated into two intervals < t1, t′

1 >
and < t′

1, t2 >, where the first interval has a collision and the second does not.
These two intervals are then pushed with the WithColl flag set as mentioned
above [lines 14-15].

21

4. Method
Algorithm 6 SIPPS Algorithm

1: create safe interval table
2: initialize Open_list and Closed_list
3: compute g-, h-, f -, and c-values of Start_node
4: Open_list← {Start_node}
5: while Open_list is not empty do
6: current← lowest_c_value(Open_list)
7: if current.is_goal then
8: return UpdatePath(current)
9: if current == goal then

10: cf ← GetFutureCol(current)
11: if cf = 0 then
12: return UpdatePath(current)
13: c(current)← c(current) + cf

14: current.is_goal← True
15: if Dominance_check(current) then
16: Open_list← Open_list ∪ current

17: if not current.is_goal then
18: closed_list.append(current)
19: Neighbours← Get_Neighbours(current)
20: for all Neighbour ∈ Neighbours do
21: NewNode = CreateNode(Neighbour)
22: compute g, h, f, of NewNode
23: c(NewNode) = c(current) + Neighbour with collision?
24: if Dominance_check(NewNode) then
25: Open_list← Open_list ∪NewNode

26: return -1

The list of all successors Succ is then returned after iterating through all
neighbours of n [line 16].

Checking the dominance of the node. In order for SIPPS to work efficiently,
it is essential to check if node n is not dominated by any other node in
Open_list before pushing it there.

Initially, the algorithm finds a set of all nodes found as a conjunction of
Open_list and Closed_list. Then it finds a set of nodes identical to n, which
means a set of nodes with the same vertex, the same safe interval id, and the
same Boolean value of is_goal [lines 1-2].

Then iterates through all the similar nodes sn found. In each iteration, it
first checks if the number of collisions c(sn) is lower than or equal to c(n) and
the earliest arrival time at sn is lower than or equal to the earliest arrival
time to n [line 4]. If so, the algorithm returns false because the old node
sn dominates the node n. Then it checks if the node n dominates some of
the nodes of sn, which means that c(sn) ≥ c(n) and the earliest arrival time
to sn is ≥ then to n [line 6]. If both are true, the algorithm removes sn

22

............................... 4.2. Multi-Agent Path Finding

Algorithm 7 Get_Neighbours(n)
1: Nn ← all reachable (v, id) pairs from n
2: Succ = ∅
3: for all (v, id) ∈ Nn do
4: < t1, t2 >= T [v][id]
5: t1 ← earliest arrival time
6: if t1 not exist then
7: continue
8: t′

1 ← earliest no collision arrival time
9: if t1 = t′

1 then
10: Succ← Succ ∪ {v, t1, t2, WithColl = False}
11: else if t′

1 not exist then
12: Succ← Succ ∪ {v, t1, t2, WithColl = True}
13: else
14: Succ← Succ ∪ {v, t1, t′

1, WithColl = True}
15: Succ← Succ ∪ {v, t′

1, t2, WithColl = False}
16: return Succ

from Open_list and Closed_list and returns true. Finally, the algorithm
determines whether the safe intervals of n and sn overlap [line 9]. If so,
the algorithm must create two disjoint intervals from these two overlapping
intervals. This is done by comparing the start of the safe interval of node n
with the start of the safe interval of node sn [line 10]. If si(n).low < si(sn).low
the si(n).high is set to the value of si(sn).low otherwise, the si(n).low is set
to the value of si(sn).high. After iterating through all similar nodes without
returning, the algorithm returns true.

Algorithm 8 Dominance_check(n)
1: All_nodes = Open_list ∪ Closed_list
2: N ← GetIdenticalNodes(n, All_nodes)
3: for all sn ∈ N do
4: if c(sn) ≤ c(n) & si(sn).low ≤ si(n).low then
5: return False
6: else if c(sn) ≥ c(n) & si(sn).low ≥ si(n).low then
7: delete sn from Open_list and Closed_list
8: return True
9: else if si(n).low < si(sn).high & si(sn).low < si(n).high then

10: if si(n).low < si(sn).low then
11: si(n).high = si(sn).low
12: else
13: si(n).low = si(sn).high

14: return True

23

4. Method
Algorithm 9 UpdatePath(curr)

1: while curr.parent ̸= nullptr do
2: prev ← curr.parent
3: t← prev.timestep + 1
4: while t < curr.timestep do
5: path[t]← prev.location
6: t← t + 1
7: path[curr.timestep]← curr.location
8: curr ← prev

9: path[0]← curr.location
10: return path

4.2.5 K-robust MAPF-LNS2

As this work focusses on extending existing MAPF algorithms into k-robust
MAPF methods, this section introduces a second k-robust algorithm, namely
the k-robust MAPF-LNS2.

The main idea of this algorithm, which involves planning the initial paths
for all agents and then iteratively improving them using k-robust LNS, remains
the same. The main difference is that the original purpose of LNS was to
reduce the number of collisions and the sum of the agents’ costs to a minimum.
In K-robust MAPF-LNS2, the purpose of LNS is to iteratively improve the
k-robustness of the paths, not the number of collisions (0-robustness) as
in the original algorithm. The LNS in the k-robust algorithm also reduces
the sum of costs, but the priority there is to find a k-robust set of paths.
The K-robust MAPF-LNS2 algorithm was created as an extension of the
MAPF-LNS2 algorithm. The biggest difference is that this algorithm does
not use LNS2, but only uses a modified LNS.

K-robust LNS

K-robust LNS works in the same way as the original LNS, which means
that k-robust LNS improves the initial solution as mentioned above. The
improvement is again caused by repeating a cycle of two phases (destroy,
repair).

In the destroy phase, again the destroy operators (described below) choose
a set of paths called neighbourhood from the plan P and destroy these paths.
These paths are then re-planned by k-robust SIPPS. The new paths are then
accepted if the new plan P ′ is more robust than P or is the same robust as
P and also has a better sum of costs of all p ∈ P ′ than the previous plan.

In the repair phase, the paths chosen by the destroy operators are again
re-planned as in the original LNS, but this time the k-robust SIPPS (described
below) is used as the re-planning algorithm.

24

............................... 4.2. Multi-Agent Path Finding

K-robust SIPPS

As mentioned above, k-robust SIPPS is a modified SIPPS algorithm used in
the k-robust MAPF-LNS2 algorithm to plan the initial solution and replan
the neighbourhood chosen by the destroy operators.

Algorithm 10 K-robust SIPPS Algorithm
1: create safe interval table
2: initialize Open_list and Closed_list
3: compute g-, h-, f -, and c-values of Start_node
4: Open_list← {Start_node}
5: while Open_list is not empty do
6: current← lowest_c_value(Open_list)
7: if current.is_goal then
8: return UpdatePath(current)
9: if current == goal then

10: cf ← GetFutureColVector(current)
11: if cf == 0 then
12: return UpdatePath(current)
13: c(current)← c(current) + cf

14: current.is_goal← True
15: if Dominance_check(current) then
16: Open_list← Open_list ∪ current

17: if not current.is_goal then
18: closed_list.append(current)
19: Neighbours← GetKrobustNeighbours(current)
20: for all Neighbour ∈ Neighbours do
21: NewNode = CreateNode(Neighbour)
22: compute g, h, f, of NewNode
23: c(neighbour)[0]← Neighbour with collision?
24: for i← 1 to k do
25: if Neighbour.ColId == i then
26: c(neighbour)[i]← 1
27: else
28: c(neighbour)[i]← 0
29: c(NewNode) = c(current) + c(neighbour)
30: if Dominance_check(NewNode) then
31: Open_list← Open_list ∪NewNode

32: return -1

The biggest difference between the original SIPPS and the k-robust one is
that in the SIPPS algorithm, each node n of a path p has a value c(n), which
is the number of collisions made to reach n. In the modified algorithm, c′(n)
is not a number, but is a vector c′(n) = [co, c1, . . . ck], where k is the desired
robustness of P and ci|i ∈< 0, k > is the number of k = i k-collisions made
to reach n.

25

4. Method
The k-robust SIPPS pseudo-algorithm can be seen in Algorithm 10. As

can be seen, the only difference between this algorithm and the original is
how it works with the value c of the nodes.

The first difference is that if the node currently being explored by the
algorithm is the goal [lines 9-12], the algorithm needs to find not only a
number of future collisions but also a number of k-collisions with agents that
were in this vertex earlier.

The next difference is in the way the algorithm finds the neighbours and
then works with them [lines 19-28]. The algorithm for finding neighbours is
described below.

After finding the neighbours, the algorithm computes a g(), h(), f() score of
the neighbour and its collision vector [lines 22-27] and adds it to the collision
vector of the current node. The rest of the algorithm remains the same as in
the original SIPPS.

Getting k-robust Neighbours. In order for k-robust SIPPS to find a k-robust
set of paths P , the function to obtain neighbours of a node needed to be
upgraded. The pseudo-algorithm of the function can be seen in algorithms 11
and 12.

As can be seen in algorithm 11 in lines 10, 12, 14, the biggest difference is
that the function to obtain neighbours uses another function 12, which instead
of returning a node with safe interval (tstart, tend) as in the standard SIPPS
divides this interval into smaller intervals and adds to them an additional
penalty according to the k-robustness of the interval.

Algorithm 11 GetK-robustNeighbours(n)
1: Nn ← all reachable (v, id) pairs from n
2: Succ = ∅
3: for all (v, id) ∈ Nn do
4: < t1, t2 >= T [v][id]
5: tearl ← earliest arrival time
6: if tearl not exist then
7: continue
8: t′

1 ← earliest no collision arrival time
9: if tearl == t′

1 then
10: Succ← Succ ∪GetSucc(t1, t2, t′

1, tearl, v, 0)
11: else if t′

1 not exist then
12: Succ← Succ ∪GetSucc(t1, t2, t′

1, tearl, v, 1)
13: else
14: Succ← Succ ∪GetSucc(t1, t2, t′

1, tearl, v, 2)
15: return Succ

The example of dividing the interval can be seen in Fig. 4.5.
As can be seen in the figure, the neighbouring vertex v has two safe intervals

((0, 5) and (6, 10)) that are reachable from the current node without any
collision. The standard SIPPS would make two neighbouring nodes from these

26

............................... 4.2. Multi-Agent Path Finding

Time
0 1 2 3 4 5 6 7 8 9 10

safe intervals of v

collision intervals of v
k=1k=2k=3k=4k=5 k=2k=1 k=2 k=1

Figure 4.5: Safe and collision intervals

two intervals and return them. In the k-robust SIPPS these two intervals
need to be divided according to the k-robustness of the algorithm.

For example, if k = 2, the k-robust SIPPS would divide these two intervals
into 6 and add the following penalty to them. The first would be (0, 3) and
have a collision index ColId = −1 as this interval does not have any k ≤ 2
collision. The next intervals would be (3, 4), (7, 9) and their collision index
ColId = 2, which means that the agent in this interval would collide if it was
delayed by 2 time steps or the agent who visits v in time step 5 was delayed
by 2 time steps. The last intervals would be (4, 5), (6, 7), (9, 10) and their
collision index ColId = 1 as they could collide if some agent was delayed by
1 time step.

All these intervals would create a new node with its interval and its CollId.

K-robust Repair operators

As mentioned above, as repair operators in k-robust MAPF-LNS2, k-robust
SIPPS is used. However, there are 3 modifications of the k-robust SIPPS
tested as repair operators. These are:. Standard. Reversed. Binary

In the Standard repair method, the nodes in OpenList are sorted by their
collision vectors. This means that they are sorted by the number of 0-collisions,
then if the number is equal by 1-collisions and so on up to k-collisions. As
the last sorting parameters, the values f and then g are used.

In the Reversed method, the nodes in OpenList are initially again sorted by
the number of 0-collisions, but then by the reversed collision vector, meaning
that after 0-collisions the next sorting parameter is the number of k-collisions,
then (k − 1)-collisions up to 1-collisions. As the last sorting parameters, the
values f and then g are used again.

In the last repair method (Binary), the nodes are sorted in the same way
as in the Standard method, but this time the vector of collisions is not a
vector of numbers but a vector of Booleans. This means that if the node
has any i-collisions, its collision vector will have number 1 (true) as its i-th
element or 0 (false) otherwise.

27

4. Method
K-robust Neighbourhood selection

As in the original (0-robust) LNS, so in the k-robust LNS the significance of
choosing the right neighbourhood persists in the context of finding the desired
solution in the shortest run-time. To find the ideal neighbourhood, three new
neighbourhood selection algorithms were created from the original Agent-
Based Neighbourhood selection method. The remaining two methods (Map-
Based Neighbourhood and Random Neighbourhood) remained unchanged.

In the initial Agent-Based Neighbourhood selection method, agents for
neighbourhood As were selected by first including the most delayed agent
a′ in As. Subsequently, additional agents were incorporated into As using a
restricted random walk strategy starting from the random vertex visited by
a′.

In the k-robust LNS, the choice of the most delayed agent was replaced by
three other methods:. Random.Most serious. Least serious

In the Random method, an agent is randomly selected from agents with a
k-collision, where k ∈< 0, desired robustness >. In the Most Serious method,
the selection is made based on an agent with the highest number of most
serious collisions, while in the Least Serious method, the choice is an agent
with the highest number of least serious collisions. As the most serious
k-collisions, those with the lowest k are considered, while the least serious
are those with the highest k.

K-robust ALNS

The k-robust ALNS is divided into two parts: the first part focusses on
eliminating k-collisions, while the second part operates as a standard ALNS,
focussing on minimising the total sum of costs.

The biggest difference from the original ALNS is that adaptive k-robust LNS
is a combination of the five previously mentioned neighbourhood selection
methods with the Standard and Binary repair method creating the total
number of ten destroy − repair pairs. In the standard ALNS there was just
one repair operator and therefore ALNS only choose the destroy operator.

At first, each destroy−repair pair i, is assigned a weight wi, initially set to
1, which is then calculated as wi = λ max{0, improvement}+wi(1−λ), where
improvement is calculated as the number of reduced k-collisions divided by
the size of neighbourhood, where k is the index of the lowest k-robustness
improved in this iteration. The probability of selecting a specific pair i with
weight wi is again equal to wi/

∑
j wj .

After reducing all k-collisions, the weight wi is set again to 1 and is then
calculated as in the standard ALNS.

28

............................... 4.2. Multi-Agent Path Finding

Algorithm 12 GetSucc(t1, t2, t′
1, tearl, v, type)

1: for i← 1 to k + 1 do
2: pens ← i
3: pene ← i
4: if t1 = 0 then
5: pens ← 0
6: if t1 + i− 1 ≥ tearl then
7: if type = 0 then
8: Succ← Succ ∪ {v, t1 + i− 1, min(t1 + i, t2), false, pens}
9: else if type = 1 then

10: Succ← Succ ∪ {v, t1 + i− 1, min(t1 + i, t2), true, pens}
11: else if type = 2 then
12: if t1 + i− 1 ≥ t′

1 then
13: Succ← Succ ∪ {v, t1 + i− 1, min(t1 + i, t2), false, pens}
14: else
15: Succ← Succ ∪ {v, t1 + i− 1, min(t1 + i, t2), true, pens}
16: if 2× i > t2 − t1 then
17: break
18: if t2 − i ≥ tearl and t2 ̸=∞ then
19: if type = 0 then
20: Succ← Succ ∪ {v, t2 − i, t2 − i + 1, false, pene}
21: else if type = 1 then
22: Succ← Succ ∪ {v, t2 − i, t2 − i + 1, true, pene}
23: else if type = 2 then
24: if t2 − i ≥ t′

1 then
25: Succ← Succ ∪ {v, t2 − i, t2 − i + 1, false, pene}
26: else
27: Succ← Succ ∪ {v, t2 − i, t2 − i + 1, true, pene}
28: if 2× i = t2 − t1 then
29: break
30: if max(tearl, t1 + k) ≤ t2 − k then
31: if type = 0 then
32: Succ← Succ ∪ {v, max(tearl, t1 + k), t2 − k, false, 0}
33: else if type = 1 then
34: Succ← Succ ∪ {v, max(tearl, t1 + k), t2 − k, true, 0}
35: else if type = 2 then
36: if t′

1 ≥ max(tearl, t1 + k) then
37: Succ← Succ ∪ {v, max(tearl, t1 + k), t′

1, true, 0}
38: if t2 − k ≥ max(max(tearl, t1 + k), t′

1) then
39: Succ← Succ ∪ {v, max(max(tearl, t1 + k), t′

1), t2 − k, false, 0}
40: return Succ

29

30

Chapter 5
Experimental Results

The experimental results section is divided into 4 main subsections; in the
first, the environment where all our algorithms are tested will be described,
in the second one the experimental results of the k-robust MAPF-LNS2
algorithm will be presented, and in the third one the experimental results of
the k-robust MAPF-SIPP will be presented. In the last section, the k-robust
MAPF algorithms will be compared.

5.1 Environment

All algorithms used in this work were tested on MAPF benchmark website
maps [20], specifically on the random-32-32-20 map (Fig. 5.1a), the random-
64-64-20 map (Fig. 5.1b), and the warehouse-10-20-10-2-1 map (Fig. 5.1c).
For each map, 10 random scenarios were chosen from the MAPF benchmark
website.

(a) : Random-32 (b) : Random-64 (c) : Warehouse

Figure 5.1: Maps of the used environments

5.2 K-robust MAPF-LNS2

In the initial part of the k-robust MAPF-LNS2 experimental section, all
user-configurable parameters, including the map, number of agents, etc., will
be presented. Subsequently, experiments will be conducted to determine

31

5. Experimental Results
the optimal size of neighbourhood, the most effective repair and destroy
operators, and the best initial planning robustness l.

5.2.1 Algorithm Configuration Parameters

In this section, all the parameters that could or must be set in the k-robust
MAPF-LNS2 algorithm are described.

Parameter Usage Example

Map -m [–map] -m "random-32.map"
Instance -a [–agents] -a "random-32.scen"
Num of Agents -k -k 50
Time Limit [s] -t [–cutoffTime] -t 5
Output Paths File –outputPaths –outputPaths=paths.txt
Max Iterations –maxIterations –maxIterations=1000
Statistics File –stats –stats=statistics.csv
Destroy Type –destroy_type –destroy_type=1
Repair Type –repair_type –repair_type=0
K-robustness –k_robust –k_robust=6
Initial K-robustness –initial_k_robust –initial_k_robust=0
Neighbourhood Size –neighborSize –neighborSize=5

Table 5.1: K-robust MAPF-LNS2 input parameters

The parameters required for the successful execution of the algorithm can
be seen in Table 5.1. An example of correct usage is provided for each of the
listed parameters.

As a map parameter, a file with the ".map" extension is requested containing
the map on which the algorithm will be tested. The instance is an optional
argument requiring a file with the ".scen" extension, which should contain a
list of start and goal positions for agents. If this parameter is omitted, the
algorithm automatically generates starting and target positions for the agents.
Other parameters include the number of agents, the time limit in seconds,
the maximum number of iterations of the algorithm, the robustness of the
initial solution, the desired robustness, the size of the neighbourhood, a file
for the resulting paths of agents, and a file for iteration statistics.

The final parameters correspond to the types of destroy and repair opera-
tors, each identified by a number from 0 to 2, as detailed in Table 5.2. For the
execution of the Adaptive destroy − repair combination, the corresponding
identifier is 5.

0 1 2 5
Destroy Random Most serious Least serious AdaptiveRepair Standard Reversed Binary

Table 5.2: Destroy and Repair type numbers

32

................................ 5.2. K-robust MAPF-LNS2

5.2.2 Neighbourhood size selecting

The first of the experiments compares the influence of a size of neighbourhood
on the time needed to reduce the number of k-collisions and the total sum of
costs.

On each of the three chosen maps, four neighbourhood sizes N = {2, 4, 6, 8}
were tested with the Standard repair and Most serious destroy operators. On
the random-32 map, the number of agents was set to 150, on the random-64
map it was set to 270, and on the warehouse map it was set to 260. The
run-time of the experiments was set to 300 s, except for one experiment where
it was set to 1800 s.

0 1 2 3 4 5 6
K-robustness [-]

0

50

100

150

200

250

300

Ti
m
e
[s
]

n = 2
n = 4
n = 6
n = 8

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

6000

8000

10000

12000

14000

16000

Su
m
 o
f c

os
ts
 [
-]

n = 2
n = 4
n = 6
n = 8

(b) : Sum of costs

Figure 5.2: Comparing neighbourhood sizes on random-32 map

For each of the selected maps, two types of graphs are presented. The first
type, illustrated in Figs. 5.2a, 5.3a, and 5.4a, compares the average time
needed for the algorithm to find the k = {0, . . . , 6}-robust solution. If, for
some experiments, the k′-robust solution is not found for k′ = {0 ≤ k′ ≤ k},
it is considered that all solutions with k ≥ k′ were found in Tmax, where
Tmax represents the run-time of the experiment. The full circles on the
graph denote the robustness values achieved by each instance, while the
empty circles represent values that were not reached in at least one of the
experiments for the given N and were penalised at least once by penalty
Tmax. The second type, illustrated in Figs. 5.2b, 5.3b, and 5.4b, compares
the average sum of costs of the agents in the chosen instances. It can be seen
that the sum of costs increases rapidly as the algorithm finds a more robust
solution at first, and then when it finds a k-robust solution, the sum of costs
only decreases.

33

5. Experimental Results

0 1 2 3 4 5 6
K-robustness [-]

0

50

100

150

200

250

300

Ti
m
e
[s
]

n = 2
n = 4
n = 6
n = 8

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

16000

18000

20000

22000

24000

26000

Su
m
 o
f c

os
ts
 [
-]

n = 2
n = 4
n = 6
n = 8

(b) : Sum of costs

Figure 5.3: Comparing neighbourhood sizes on random-64 map

0 1 2 3 4 5 6
K-robustness [-]

0

20

40

60

80

100

120

Ti
m
e
[s
]

n = 2
n = 4
n = 6
n = 8

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

26000

28000

30000

32000

34000

Su
m
 o
f c

os
ts
 [
-]

n = 2
n = 4
n = 6
n = 8

(b) : Sum of costs

Figure 5.4: Comparing neighbourhood sizes on warehouse map

Although a larger N in the LNS allows for more possible combinations in
repairs, and therefore should find better solutions with better robustness and
cost [8], Fig. 5.5 indicates that with increasing size, the time required to find
individual k-robustness increases significantly.

0 1 2 3 4 5 6
K-robustness [-]

0

500

1000

1500

2000

2500

Ti
m
e
[s
]

n = 2
n = 4
n = 6
n = 8

(a) : Robustness

0 500 1000 1500 2000 2500 3000 3500
Runtime [s]

6000

8000

10000

12000

14000

16000

Su
m
 o
f c

os
ts
 [
-]

n = 2
n = 4
n = 6
n = 8

(b) : Sum of costs

Figure 5.5: Comparing neighbourhood sizes on random-32 with Tmax = 3600s

The total number of iterations, accepted iterations and the success rate

34

................................ 5.2. K-robust MAPF-LNS2

of accepting iterations for each N on each map can be seen in Table 5.3.
The success rate (SR) is considered as the number of improving (accepted)
iterations compared to all performed until reaching 90% of accepted iterations.
This approach prevents penalising the success rate of methods that quickly
find the optimal solution and subsequently have no more improving iterations.
It can be seen that the larger neighbourhoods performs much fewer iterations
and therefore finds the k-robust solution much slower than the smaller N .
As can be seen, the dependence of the size of N on the number of iterations
is not directly proportional, as one might expect. Instead, doubling the size
of N results in approximately three times fewer iterations. Therefore, a
neighbourhood of size N > 6, in these maps and instances, is not suitable for
k-robust MAPF-LNS2.

N Iterations Accepted SR
2 57607.3 1068.1 5.8 %
4 20296.2 689.3 5.1 %
6 9600.4 275.4 5.0 %
8 6442.6 150.4 4.2 %

(a) : Random-32 iterations

N Iterations Accepted SR
2 27243.5 1574.9 9.7 %
4 9956.0 860.3 11.1 %
6 4933.2 323.7 9.2 %
8 3410.6 203.2 9.1 %

(b) : Random-64 iterations
N Iterations Accepted SR
2 12884.5 1097.5 17.1 %
4 5827.0 817.5 21.0 %
6 3590.8 590.5 20.6 %
8 1861.4 321.6 21.0 %

(c) : Warehouse iterations

Table 5.3: Neighbourhood iterations statistics

As can be seen in Fig. 5.6, where the number of agents on map random-32
was reduced to 100, in simpler instances, a neighbourhood of size 4 and 6
finds a better solution in terms of the total sum of costs, but still finds the
k-robust solution slower than N = 2, which is the main goal of this thesis.

0 1 2 3 4 5 6
K-robustness [-]

0

10

20

30

40

50

60

70

Ti
m
e
[s
]

n = 2
n = 4
n = 6
n = 8

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

4500

5000

5500

6000

6500

Su
m
 o
f c

os
ts
 [
-]

n = 2
n = 4
n = 6
n = 8

(b) : Sum of costs

Figure 5.6: Comparing neighbourhood sizes on random-32 map with 100 agents

The neighbourhood of size 2 was the best on both "Random" maps, both in

35

5. Experimental Results
terms of finding a k-robust solution quickly and optimising the sum of costs.
On the "Warehouse" map, again, N = 2 found solutions with a lower sum
of costs, but in one case it did not even find a 0-robust solution. Therefore,
it was penalised for all k′ ∈ {0, . . . , 6}, making it slower to find k-robust
solutions than N = 4. However, for further experiments, N = 2 is still chosen
because it finds k-robust solutions faster and with a better sum of costs. If
the algorithm does not find a solution in a minority of cases, a larger N size
can be considered for these specific cases. However, in most cases, N = 2
proves to be the best.

5.2.3 Testing operators

The second of the experiments tested and compared the new repair and
destroy operators. The 9 combinations of the 3 new repair and 3 new
destroy operators were tested on the same instances and maps as in 5.2.2.
The number of agents and the run-time also remained unchanged. The size
of neighboourhood was set at 2 agents as it was previously shown to be the
best.

Figs. 5.7a, 5.8a, and 5.9a again show the k-robustness of each pair destroy−
repair while Figs. 5.7b, 5.8b, and 5.9b again show the sum of costs of each
pair.

0 1 2 3 4 5 6
K-robustness [-]

0

25

50

75

100

125

150

175

200

Ti
m
e
[s
]

Adaptive
LeastSer Binary
LeastSer Reversed
LeastSer Standard
MostSer Binary

MostSer Reversed
MostSer Standard
Random Binary
Random Reversed
Random Standard

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

6000

8000

10000

12000

14000

16000

Su
m
 o
f c

os
ts
 [
-]

Adaptive
LeastSer Binary
LeastSer Reversed
LeastSer Standard
MostSer Binary

MostSer Reversed
MostSer Standard
Random Binary
Random Reversed
Random Standard

(b) : Sum of costs

Figure 5.7: Comparing operators on random-32 map

36

................................ 5.2. K-robust MAPF-LNS2

0 1 2 3 4 5 6
K-robustness [-]

0

25

50

75

100

125

150

175

200
Ti
m
e
[s
]

Adaptive
LeastSer Binary
LeastSer Reversed
LeastSer Standard
MostSer Binary

MostSer Reversed
MostSer Standard
Random Binary
Random Reversed
Random Standard

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

16000

18000

20000

22000

24000

26000

Su
m
 o
f c

os
ts
 [
-]

Adaptive
LeastSer Binary
LeastSer Reversed
LeastSer Standard
MostSer Binary

MostSer Reversed
MostSer Standard
Random Binary
Random Reversed
Random Standard

(b) : Sum of costs

Figure 5.8: Comparing operators on random-64 map

0 1 2 3 4 5 6
K-robustness [-]

0

25

50

75

100

125

150

175

200

Ti
m
e
[s
]

Adaptive
LeastSer Binary
LeastSer Reversed
LeastSer Standard
MostSer Binary

MostSer Reversed
MostSer Standard
Random Binary
Random Reversed
Random Standard

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

26000

28000

30000

32000

34000

Su
m
 o
f c

os
ts
 [
-]

Adaptive
LeastSer Binary
LeastSer Reversed
LeastSer Standard
MostSer Binary

MostSer Reversed
MostSer Standard
Random Binary
Random Reversed
Random Standard

(b) : Sum of costs

Figure 5.9: Comparing operators on warehouse map

In Figs. 5.7a, 5.8a, and 5.9a, it can be seen that three of the pairs perform
significantly worse in finding the k-robust set of paths and also in finding
the best cost solution (Figs. 5.7b, 5.8b, 5.9b), specifically the pairs with the
"Reversed" repair operator. The average number of iterations performed by
each pair destroy − repair can be seen in Table 5.4. It can be seen that the
execution time of each destroy method is similar, considering that the number
of iterations is usually comparable among them. It is also evident that the
"Binary" repair method is slightly slower than the "Standard" method, and
the execution of the "Reverse" method takes more than three times longer
than the "Standard" method.

The performance of the remaining six pairs is highly dependent on the
chosen map. Therefore, we present the "Adaptive" destroy − repair operator
as a combination of the six best destroy − repair pairs using the Adaptive
LNS method.

37

5. Experimental Results
Stand Reverse Binary

Random 57808.6 13993.4 43716.9
MostSer 57855.2 16025.6 41470.9
LeastSer 63229.6 13158.7 52056.1

(a) : Random-32 iterations

Stand Reverse Binary
Random 26556.8 8657.1 26565.9
MostSer 27181.7 7484.2 25545.0
LeastSer 25516.9 8245.0 25082.1

(b) : Random-64 iterations
Stand Reverse Binary

Random 14238.4 2873.9 13613.4
MostSer 12823.5 3019.6 13850.6
LeastSer 13261.1 2738.1 13276.6

(c) : Warehouse iterations

Table 5.4: Operators iterations statistics

It can be seen that the "Adaptive" operator is never the best or the worst
when compared to the other six best destroy − repair combinations in terms
of the speed of finding the k-robust solution. Instead, it consistently ranks
around the middle in comparison with them. Therefore, it is an ideal method
to reliably search for the k-robust set of paths. Even in the search for solutions
with the lowest cost, the "Adaptive" operator is a good choice as it again
performs similarly to the best destroy − repair combinations.

5.2.4 Initial solution robustness

In this part of the work, the influence of the initial robustness l of the initial
solution on the speed of finding the desired k-robustness was tested. Initially,
k-robust MAPF-LNS2 attempted to find a l-robust set of paths using l-robust
Prioritised SIPPS. Subsequently, regardless of whether it succeeded in finding
the l-robust solution, this set of paths was used as the initial solution to find
the k-robust set of paths.

The experiment was performed for k ∈ {4, 6} and l ∈ (0, k + 1) with
the same number of agents as in the previous tests, on the same maps and
instances. The size of neighbourhood was again chosen as 2 agents.

The influence of the initial l-robustness chosen on the time needed to find
a k-robust solution can be seen in Figs. 5.10a, 5.12a and 5.14a, where the
desired k-robustness is 4 and in Figs. 5.11a, 5.13a and 5.15a, where it is 6.
The influence of the chosen l on the total sum of costs is shown in Figs. 5.10b,
5.11b, 5.12b, 5.13b, 5.14b, 5.15b.

38

................................ 5.2. K-robust MAPF-LNS2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
K-robustness [-]

0

20

40

60

80

100

120

140
Ti
m
e
[s
]

l=0
l=1
l=2
l=3
l=4
l=5

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

6000

7000

8000

9000

10000

11000

12000

Su
m
 o
f c

os
ts
 [
-]

l=0
l=1
l=2
l=3
l=4
l=5

(b) : Sum of costs

Figure 5.10: Initial robustness testing on random-32 map with k=4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
K-robustness [-]

0

20

40

60

80

100

120

Ti
m
e
[s
]

l=0
l=1
l=2
l=3
l=4
l=5
l=6
l=7

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

6000

8000

10000

12000

14000

16000

Su
m
 o
f c

os
ts
 [
-]

l=0
l=1
l=2
l=3
l=4
l=5
l=6
l=7

(b) : Sum of costs

Figure 5.11: Initial robustness testing on random-32 map with k=6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
K-robustness [-]

0

10

20

30

40

Ti
m
e
[s
]

l=0
l=1
l=2
l=3
l=4
l=5

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

15000

16000

17000

18000

19000

20000

21000

Su
m
 o
f c

os
ts
 [
-]

l=0
l=1
l=2
l=3
l=4
l=5

(b) : Sum of costs

Figure 5.12: Initial robustness testing on random-64 map with k=4

39

5. Experimental Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
K-robustness [-]

0

5

10

15

20

25

30

35

Ti
m
e
[s
]

l=0
l=1
l=2
l=3
l=4
l=5
l=6
l=7

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

16000

18000

20000

22000

24000

26000

Su
m
 o
f c

os
ts
 [
-]

l=0
l=1
l=2
l=3
l=4
l=5
l=6
l=7

(b) : Sum of costs

Figure 5.13: Initial robustness testing on random-64 map with k=6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
K-robustness [-]

20

40

60

80

100

Ti
m
e
[s
]

l=0
l=1
l=2
l=3
l=4
l=5

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

24000

25000

26000

27000

28000

29000

30000

Su
m
 o
f c

os
ts
 [
-]

l=0
l=1
l=2
l=3
l=4
l=5

(b) : Sum of costs

Figure 5.14: Initial robustness testing on warehouse map with k=4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
K-robustness [-]

10

20

30

40

50

60

Ti
m
e
[s
]

l=0
l=1
l=2
l=3
l=4
l=5
l=6
l=7

(a) : Robustness

0 50 100 150 200 250 300
Runtime [s]

26000

28000

30000

32000

34000

Su
m
 o
f c

os
ts
 [
-]

l=0
l=1
l=2
l=3
l=4
l=5
l=6
l=7

(b) : Sum of costs

Figure 5.15: Initial robustness testing on warehouse map with k=6

As seen in the Figs. mentioned above, there is no clear dependence of
the initial l-robustness on the time needed to find the k-robust solution. In
some cases, such as in Figs. 5.10a, 5.11a, it appears that higher values of
l find the resulting k faster, but in other cases, high values of l search for

40

................................ 5.2. K-robust MAPF-LNS2

k-robust solutions more slowly. Regarding the sum of costs, it is evident from
the graphs that experiments with l ≥ k result in solutions with higher costs
compared to lower l values.

Therefore, it cannot be conclusively stated with which initial l-robustness
parameter it is best to run the algorithm to find the desired k-robust solution
most quickly. For this reason, we will use the value l = 3, which never
performs the worst in terms of the speed of finding k-robust solutions and is
also not the worst in finding solutions with the lowest cost.

5.2.5 Robustness - cost

In the Table 5.5, the first column shows the average cost sum for each map
for k ∈ (0, 6). The second column shows the increment in the cost sum for a
given k compared to k = 0. On the random-32 map, the number of agents
was set to 150, on the random-64 map it was set to 270, and on the warehouse
map it was set to 260. The run-time of the experiments was set to 300 s, and
the Adaptive operator was used.

It can be seen that with increasing k-robustness the total sum of costs also
increases. It can be seen that on the random-32 map it is much harder to
find k-robust solutions, as there are many agents on a relatively small map,
than on the other two maps, and therefore the increase of the sum of costs
is much higher, meaning that this map with the chosen number of agents
would probably need more run time to get better results. On the random-64
and warehouse map, it can be seen that the increase in the sum of costs from
the 0-robust solution to, for example, the 1-robust solution is maximal 5%,
which is not much considering the fact that it can prevent some collisions.

K SoC Incr.
0 3703.8 1
1 4204.7 1.14
2 5154.2 1.39
3 6475.8 1.75
4 8104.7 2.19
5 9472.0 2.56
6 11841.3 3.20

(a) : Random-32

K SoC Incr.
0 12209.1 1
1 12790.2 1.05
2 13546.8 1.11
3 14998.3 1.23
4 16920.2 1.39
5 18459.9 1.51
6 20762.7 1.70

(b) : Random-64

K SoC Incr.
0 21423.3 1
1 22030.4 1.03
2 22618.5 1.06
3 23285.2 1.08
4 24290.9 1.13
5 25642.4 1.20
6 27001.5 1.26

(c) : Warehouse

Table 5.5: Increasing robustness sum of costs

41

5. Experimental Results
5.3 K-robust MAPF-SIPP

5.3.1 Parameters

Parameter Usage Example

Map -i -i "random-32.map"
Instance -j -j "random-32.scen"
Num of Agents -a -a 50
Statistics File -o -o "stats.yaml"
K-robustness -g -g 6
Blocking limit -b -b 50

Table 5.6: K-robust MAPF-SIPP input parameters

The parameters required for the algorithm and their correct use can be seen
in Table 5.6.

As a map parameter, a file with the ".map" extension containing the map
is required. Additionally, an instance parameter necessitates a file with the
".scen" extension, which includes a set of start and goal positions for agents.
The following essential parameters include the number of agents, the desired
k-robustness, and the address of the statistics file with the ".yaml" extension.
The blocking limit parameter is the initial number of time steps in which no
agent can move to the starting location of other agents. This parameter was
added to k-robust MAPF-SIPP to increase the success rate of the algorithm
by preventing agents from getting stuck in their starting location without
possible movement.

5.3.2 Success rate

In Tables 5.7 and 5.8 can be seen the success rate of the MAPF-SIPP algorithm
with the blocking limit set to 50. It can be seen that on the random-32 map
the k-robust MAPF-SIPP algorithm found a 6-robust solution on at least
90% instances only for a maximum of 40 agents, while on the random-64 map
it was able to find at least 90% of 6-robust solutions for up to 180 agents.

Agents: 10 20 30 40 50 60 70 80 90 100 110 120 130 140
k=1 1.0 1.0 1.0 1.0 0.9 0.8 0.7 0.7 0.7 0.7 0.6 0.4 0.3 0.4
k=2 1.0 1.0 1.0 1.0 0.9 0.8 0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.2
k=3 1.0 1.0 0.9 0.9 0.9 0.8 0.7 0.7 0.7 0.7 0.5 0.5 0.3 0.1
k=4 1.0 1.0 0.9 0.9 0.9 0.8 0.7 0.7 0.7 0.7 0.4 0.4 0.2 0.0
k=5 1.0 1.0 0.9 0.9 0.7 0.7 0.7 0.7 0.7 0.5 0.4 0.1 0.2 0.1
k=6 1.0 1.0 0.9 0.9 0.7 0.7 0.7 0.6 0.5 0.3 0.1 0.0 0.0 0.0

Table 5.7: K-robust MAPF-SIPP success rate on random-32 map

42

........................ 5.4. Comparison of k-robust MAPF algorithms

Agents: 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
k=1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8
k=2 1.0 1.0 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8
k=3 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8
k=4 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.8 0.9
k=5 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.7
k=6 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8

Table 5.8: K-robust MAPF-SIPP success rate on random-64 map

5.4 Comparison of k-robust MAPF algorithms

In this section, both presented k-robust algorithms will be compared.
To evaluate algorithmic performance based on the overall cost effectiveness

of their solutions, only the instances in which k-robust MAPF-SIPP success-
fully found a solution were chosen, k-robust MAPF-LNS2 found the desired
k-robust solution in these instances every time. The time limit for the k-
robust MAPF-LNS2 algorithm was set at 15 s and the k-robust MAPF-SIPP
block limit was set at 50. In Tables 5.9, 5.10, and 5.11 the comparison of the
total sum of costs of the two algorithms on the same instances can be seen.
In Figs 5.9c, 5.10c, and 5.11c the increment of the k-robust MAPF-SIPP
solution sum of costs can be seen compared to the solution found by k-robust
MAPF-LNS2

Agents: 10 20 30 40
k=4 225.3 456.3 715.4 1015.4
k=6 229.5 471.7 758.9 1125.2

(a) : MAPF-LNS2

Agents: 10 20 30 40
k=4 239.7 500.3 842.4 1251.3
k=6 247.4 538.6 921.1 1404.2

(b) : MAPF-SIPP

Agents: 10 20 30 40
k=4 1.06 1.10 1.18 1.23
k=6 1.08 1.14 1.21 1.25

(c) : Increment

Table 5.9: Comparing algorithms sum of costs on random-32 map

Agents: 110 130 150 170
k=4 5445.1 6544.4 7733.4 9037.3
k=6 5865.9 7228.6 8800.1 10739.0

(a) : MAPF-LNS2

Agents: 110 130 150 170
k=4 6101.7 7432.4 8899.9 10453.9
k=6 6741.1 8314.6 10087.2 11999.6

(b) : MAPF-SIPP

Agents: 110 130 150 170
k=4 1.12 1.14 1.15 1.16
k=6 1.15 1.15 1.15 1.12

(c) : Increment

Table 5.10: Comparing algorithms sum of costs on random-64 map

Agents: 110 130 150 170
k=4 9771.2 11281.6 13274.8 15074.1
k=6 10036.0 11669.6 14009.2 16174.0

(a) : MAPF-LNS2

Agents: 110 130 150 170
k=4 10257.6 11929.7 13852.8 15702.9
k=6 10470.1 12222.3 14224.4 16197.7

(b) : MAPF-SIPP

Agents: 110 130 150 170
k=4 1.05 1.06 1.04 1.04
k=6 1.04 1.05 1.02 1.00

(c) : Increment

Table 5.11: Comparing algorithms sum of costs on warehouse map

It can be observed that the k-robust MAPF-LNS2 algorithm consistently
found a less expensive solution in all cases. However, the solutions found by
MAPF-SIPP are often not significantly more expensive than those found by
MAPF-LNS2. For example, on the warehouse map, the solution found by
k-robust MAPF-SIPP is a maximum of 1.06 times more expensive than the
solution found by k-robust MAPF-LNS2. However, the solutions found for 40
agents on the random-32 map are up to 1.25 times worse, which is significant.

The next main advantage of k-robust MAPF-LNS2 over k-robust MAPF-
SIPP is that if MAPF-LNS2 fails to find a k-robust solution, it returns at

43

5. Experimental Results
least the highest found i-robust solution, where i < k. In general, k-robust
MAPF-LNS2 outperformed k-robust MAPF-SIPP in all experiments and all
metrics.

44

Chapter 6
Conclusion

This work focused on planning a k-robust set of paths for multiple robots,
allowing each of them to be delayed by up to k time steps without colliding.
Its objective was to enhance two existing multiagent algorithms to search
for k-robust paths. Specifically, a k-robust MAPF-SIPP algorithm and a
k-robust MAPF-LNS2 algorithm were implemented. Various strategies were
tested to find k-robust paths using k-robust MAPF-LNS2, such as the size of
neighbourhood or the influence of l-robustness of the initial solution on the
speed of finding the desired k-robust solution. In addition, new destroy and
repair operators were designed and tested for use in k-robust MAPF-LNS2
to efficiently find a k-robust set of paths.

The k-robust MAPF-LNS2 algorithm outperforms the standard k-robust
SIPP algorithm in terms of the success rate in finding the solutions and also
in the sum of costs of the solution.

Furthermore, it would be interesting to design and test adaptive sizes of
neighbourhood that could find k-robust solutions more quickly and with a
lower sum of costs.

45

46

Bibliography

[1] Zain Alabedeen Ali and Konstantin Yakovlev. Prioritized SIPP for Multi-
agent Path Finding with Kinematic Constraints. In Andrey Ronzhin,
Gerhard Rigoll, and Roman Meshcheryakov, editors, Interactive Collab-
orative Robotics, Lecture Notes in Computer Science, pages 1–13, Cham,
2021. Springer International Publishing.

[2] Dor Atzmon, Ariel Felner, Roni Stern, Glenn Wagner, Roman Barták,
and Neng-Fa Zhou. k-Robust Multi-Agent Path Finding. Proceedings
of the International Symposium on Combinatorial Search, 8(1):157–158,
September 2021.

[3] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, and Sven
Koenig. Probabilistic Robust Multi-Agent Path Finding. Proceedings
of the International Conference on Automated Planning and Scheduling,
30:29–37, June 2020.

[4] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal
Variants of the Conflict-Based Search Algorithm for the Multi-Agent
Pathfinding Problem. Proceedings of the International Symposium on
Combinatorial Search, 5(1):19–27, 2014.

[5] Michael Erdmann and Tomás Lozano-Pérez. On multiple moving objects.
Algorithmica, 2(1):477–521, November 1987.

[6] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, July 1968.

[7] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter Stuckey, and Sven Koenig.
MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large
Neighborhood Search. Proceedings of the AAAI Conference on Artificial
Intelligence, 36:10256–10265, June 2022.

[8] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven
Koenig. Anytime Multi-Agent Path Finding via Large Neighborhood
Search. volume 4, pages 4127–4135, August 2021.

47

6. Conclusion......................................
[9] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. EECBS: A Bounded-

Suboptimal Search for Multi-Agent Path Finding. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(14):12353–12362, May
2021.

[10] Ryan Luna and Kostas E. Bekris. Efficient and complete centralized
multi-robot path planning. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3268–3275, September 2011.

[11] Hang Ma and Sven Koenig. AI buzzwords explained: multi-agent path
finding (MAPF). AI Matters, 3(3):15–19, 2017.

[12] Robert Morris, Corina S Pasareanu, Kasper Søe Luckow, Waqar Malik,
Hang Ma, TK Satish Kumar, and Sven Koenig. Planning, scheduling and
monitoring for airport surface operations. In AAAI Workshop: Planning
for Hybrid Systems, pages 608–614, 2016.

[13] Mike Phillips and Maxim Likhachev. SIPP: Safe interval path planning
for dynamic environments. In 2011 IEEE International Conference on
Robotics and Automation, pages 5628–5635, May 2011.

[14] Qandeel Sajid, Ryan Luna, and Kostas Bekris. Multi-Agent Pathfinding
with Simultaneous Execution of Single-Agent Primitives. Proceedings of
the International Symposium on Combinatorial Search, 3(1):88–96, 2012.

[15] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant.
Conflict-based search for optimal multi-agent pathfinding. Artificial
Intelligence, 219:40–66, February 2015.

[16] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The
increasing cost tree search for optimal multi-agent pathfinding. Artificial
Intelligence, 195:470–495, February 2013.

[17] Paul Shaw. Using Constraint Programming and Local Search Methods
to Solve Vehicle Routing Problems. In Michael Maher and Jean-Francois
Puget, editors, Principles and Practice of Constraint Programming —
CP98, Lecture Notes in Computer Science, pages 417–431, Berlin, Hei-
delberg, 1998. Springer.

[18] David Silver. Cooperative Pathfinding. Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment,
1(1):117–122, 2005.

[19] Roni Stern. Multi-Agent Path Finding – An Overview. In Gennady S.
Osipov, Aleksandr I. Panov, and Konstantin S. Yakovlev, editors, Artifi-
cial Intelligence: 5th RAAI Summer School, Dolgoprudny, Russia, July
4–7, 2019, Tutorial Lectures, Lecture Notes in Computer Science, pages
96–115. Springer International Publishing, Cham, 2019.

48

...................................... 6. Conclusion

[20] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Kumar,
Roman Barták, and Eli Boyarski. Multi-Agent Pathfinding: Definitions,
Variants, and Benchmarks. Proceedings of the International Symposium
on Combinatorial Search, 10(1):151–158, 2019.

[21] Glenn Wagner and Howie Choset. Subdimensional expansion for multi-
robot path planning. Artificial Intelligence, 219:1–24, February 2015.

[22] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI
Magazine, 29(1):9–9, March 2008.

[23] Michal Čáp, Jiří Vokřínek, and Alexander Kleiner. Complete Decen-
tralized Method for On-Line Multi-Robot Trajectory Planning in Well-
formed Infrastructures. Proceedings of the International Conference on
Automated Planning and Scheduling, 25:324–332, April 2015.

49

50

Appendix A
List of Abbreviations

Abbreviation Meaning

ALNS Adaptive Large Neighbourhood search
CBS Conflict Based Search
HCA* Hierarchical Cooperative A*
LNS Large Neighbourhood Search
MAPF Multi-Agent Path Finding
MAPF-LNS2 Multi-Agent Path Finding via Large Neighbourhood

Search
MAPF-SIPP Multi-Agent Path Finding via Safe Interval Path

Planning
PP Prioritised Planning
SIPP Safe Interval Path Planning
SIPPS Safe Interval Path Planning with Soft constraints
SR Success rate

51

	Introduction
	Related works
	Problem Formulation
	Environment
	Single Agent Path Finding
	MAPF
	K-robustness
	Optimal path
	Single agent optimal path
	Multiple agents optimal path

	Method
	Single-agent path planning
	 A* algorithm
	SIPP

	Multi-Agent Path Finding
	Prioritised Planning
	MAPF-SIPP
	K-robust MAPF-SIPP
	MAPF-LNS2
	K-robust MAPF-LNS2

	Experimental Results
	Environment
	K-robust MAPF-LNS2
	Algorithm Configuration Parameters
	Neighbourhood size selecting
	Testing operators
	Initial solution robustness
	Robustness - cost

	K-robust MAPF-SIPP
	Parameters
	Success rate

	Comparison of k-robust MAPF algorithms

	Conclusion
	Bibliography
	List of Abbreviations

